Fluctuations of trading volume in a stock market
Byoung Hee Hong,
Kyoung Eun Lee,
Jun Kyung Hwang and
Jae Woo Lee
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 6, 863-868
Abstract:
We consider the probability distribution function of the trading volume and the volume changes in the Korean stock market. The probability distribution function of the trading volume shows double peaks and follows a power law, P(V/〈V〉)∼(V/〈V〉)−α at the tail part of the distribution with α=4.15(4) for the KOSPI (Korea composite Stock Price Index) and α=4.22(2) for the KOSDAQ (Korea Securities Dealers Automated Quotations), where V is the trading volume and 〈V〉 is the monthly average value of the trading volume. The second peaks originate from the increasing trends of the average volume. The probability distribution function of the volume changes also follows a power law, P(Vr)∼Vr−β, where Vr=V(t)−V(t−T) and T is a time lag. The exponents β depend on the time lag T. We observe that the exponents β for the KOSDAQ are larger than those for the KOSPI.
Keywords: Econophysics; Stock market; Trading volume; Power law (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108009679
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:6:p:863-868
DOI: 10.1016/j.physa.2008.11.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().