Jump detection and long range dependence
Davide Pirino ()
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 7, 1150-1156
Abstract:
Memory properties of financial assets are investigated. Using Detrended Fluctuation Analysis we show that the long memory detection in volatility is affected by the presence of jumps, realized volatility being a biased volatility proxy. We propose threshold bipower variation as an alternative volatility estimator unaffected by discontinuous variations. We also show that, with typical sample sizes, DFA is unable to disentangle long memory from short range dependence with characteristic time comparable to the whole sample length.
Keywords: Jump detection; Threshold bipower variation; Realized volatility; Detrended fluctuation analysis; Long memory process; Long memory detection (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108010339
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:7:p:1150-1156
DOI: 10.1016/j.physa.2008.12.035
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().