EconPapers    
Economics at your fingertips  
 

de Broglie’s wave hypothesis from Fisher information

B. Roy Frieden and Bernard H. Soffer

Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 7, 1315-1330

Abstract: Seeking the unknown dynamics obeyed by a particle gives rise to the de Broglie wave representation, without the need for physical assumptions specific to quantum mechanics. The only required physical assumption is conservation of momentum μ. The particle, of mass m, moves through free space from an unknown source-plane position a to an unknown coordinate x in an aperture plane of unknown probability density pX(x), and then to an output plane of observed position y=a+z. There is no prior knowledge of the probability laws p(a,M),p(a) or p(M), with M the particle momentum at the source. It is desired to (i) optimally estimate a, in the sense of a maximum likelihood (ML) estimate. The estimate is further optimized, by minimizing its error through (ii) maximizing the Fisher information about a that is received at y. Forming the ML estimate requires (iii) estimation of the likelihood law pZ(z), which (iv) must obey positivity. The relation pZ(z)≡|u(z)|2≥0 satisfies this. The same u(z) conveniently defines the Fisher channel capacity, a concept central to the principle of Extreme physical information (EPI). Its output u(z) achieves aims (i)–(iv). The output is parametrized by a free parameter K. For a choice K=0, the result is u(z)=δ(z), indicating classical motion. Or, for a finite, empirical choice K=ħ (Planck’s constant), u(z) obeys the familiar de Broglie representation as the Fourier transform of the particle’s probability amplitude function P(μ) on momentum μ. For a definite momentum μ,u(z) becomes a sinusoid of wavelength λ=h/μ, the de Broglie result.

Keywords: de Broglie hypothesis, derivation; Fisher information; Maximum-likelihood estimate (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710800976X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:7:p:1315-1330

DOI: 10.1016/j.physa.2008.11.040

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:388:y:2009:i:7:p:1315-1330