Magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model in the longitudinal magnetic field within the effective-field approximation
Bayram Deviren,
Mustafa Keskin and
Osman Canko
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 9, 1835-1848
Abstract:
The magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model with a crystal field in a longitudinal magnetic field on the honeycomb (z=3) and square lattice (z=4) are studied by using the effective-field theory with correlations. The ground state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice and total magnetizations, and present the phase diagrams in the (Δ/|J|, kBT/|J|) plane. The phase diagrams have one, two or even three compensation temperatures depending on the values of the crystal-field interaction. Moreover, the susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field.
Keywords: Mixed spin-1/2 and spin-5/2 Ising model; Magnetization; Phase diagram; Effective-field theory (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109000417
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:9:p:1835-1848
DOI: 10.1016/j.physa.2009.01.032
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().