Self-similarity degree of deformed statistical ensembles
A.I. Olemskoi,
A.S. Vaylenko and
I.A. Shuda
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 9, 1929-1938
Abstract:
We consider self-similar statistical ensembles with the phase space whose volume is invariant under the deformation that squeezes (expands) the coordinate and expands (squeezes) the momentum. The related probability distribution function is shown to possess a discrete symmetry with respect to manifold action of the Jackson derivative to be a homogeneous function with a self-similarity degree q fixed by the condition of invariance under (n+1)-fold action of the related dilatation operator. In slightly deformed phase space, we find the homogeneous function is defined with the linear dependence at n=0, whereas the self-similarity degree equals the gold mean at n=1, and q→n in the limit n→∞. Dilatation of the homogeneous function is shown to decrease the self-similarity degree q at n>0.
Keywords: Self-similarity; Dilatation; Jackson derivative; Homogeneous function (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109000818
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:9:p:1929-1938
DOI: 10.1016/j.physa.2009.01.024
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().