EconPapers    
Economics at your fingertips  
 

The influence of fractality on the time evolution of the diffusion process

H. Şirin, F. Büyükkılıç, H. Ertik and D. Demirhan

Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 10, 2007-2013

Abstract: In the literature, the deviations from standard behaviors of the solutions of the kinetic equation and the analogous diffusion equation are put forward by investigations which are carried out in the frame of fractional mathematics and nonextensive physics. On the other hand, the physical origins of the order of derivative namely α in fractional mathematics and the entropy index q in nonextensive physics are a topic of interest in scientific media. In this study, the solutions of the diffusion equation which have been obtained in the framework of fractional mathematics and nonextensive physics are revised. The diffusion equation is solved by the cumulative diminuation/growth method which has been developed by two of the present authors and physical nature of the parameters α and q are enlightened in connection with fractality of space and the memory effect. It has been emphasized that the mathematical basis of deviations from standard behavior in the distribution functions could be established by fractional mathematics where as the physical mechanism could be revealed using the cumulative diminuation/growth method.

Keywords: Fractional diffusion equation; Fractional kinetic equation; Mittag-Leffler function; Cumulative diminuation/growth processes (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110000816
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:10:p:2007-2013

DOI: 10.1016/j.physa.2010.01.027

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:389:y:2010:i:10:p:2007-2013