EconPapers    
Economics at your fingertips  
 

Non-linear Liouville and Shrödinger equations in phase space

M.C.B. Fernandes, F.C. Khanna, M.G.R. Martins, A.E. Santana and J.D.M. Vianna

Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 17, 3409-3419

Abstract: Unitary representations of the Galilei group are studied in phase space, in order to describe classical and quantum systems. Conditions to write in general form the generator of time translation and Lagrangians in phase space are then established. In the classical case, Galilean invariance provides conditions for writing the Liouville operator and Lagrangian for non-linear systems. We analyze, as an example, a generalized kinetic equation where the collision term is local and non-linear. The quantum counter-part of such unitary representations are developed by using the Moyal (or star) product. Then a non-linear Schrödinger equation in phase space is derived and analyzed. In this case, an association with the Wigner formalism is established, which provides a physical interpretation for the formalism.

Keywords: Galilei group; Kinetic theory; Non-linear equations in phase space (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110003699
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:17:p:3409-3419

DOI: 10.1016/j.physa.2010.04.030

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:389:y:2010:i:17:p:3409-3419