Penrose tiling fractality in coordination Cayley’s tree graphs representation
A.N. Mihalyuk,
P.L. Titov and
V.V. Yudin
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 19, 4127-4139
Abstract:
We offer the mathematical apparatus for mapping lattice and cellular systems into the generalized coordination Cayley’s tree graphs. These Cayley’s trees have a random branchiness property and an intralayer interbush local intersection. Classical Bethe-Cayley tree graphs don’t have these properties. Bush type simplicial decomposition on Cayley’s tree graphs is introduced, on which the enumerating polynomials or enumerating distributions are built. Within the entropy methodology three types of fractal characteristics are introduced, which characterize quasi-crystalline pentagonal Penrose tiling. The quantitative estimate for the frontal-radial fractal percolation on a Cayley’s tree graph of a Penrose tiling leading to the overdimensioned effect is calculated.
Keywords: Penrose tiling; Coordination Cayley’s tree graphs; Percolation; Fractality (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711000498X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:19:p:4127-4139
DOI: 10.1016/j.physa.2010.06.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().