A higher-order macroscopic model for pedestrian flows
Yan-qun Jiang,
Peng Zhang,
S.C. Wong and
Ru-xun Liu
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 21, 4623-4635
Abstract:
This paper develops a higher-order macroscopic model of pedestrian crowd dynamics derived from fluid dynamics that consists of two-dimensional Euler equations with relaxation. The desired directional motion of pedestrians is determined by an Eikonal-type equation, which describes a problem that minimizes the instantaneous total walking cost from origin to destination. A linear stability analysis of the model demonstrates its ability to describe traffic instability in crowd flows. The algorithm to solve the macroscopic model is composed of a splitting technique introduced to treat the relaxation terms, a second-order positivity-preserving central-upwind scheme for hyperbolic conservation laws, and a fast-sweeping method for the Eikonal-type equation on unstructured meshes. To test the applicability of the model, we study a challenging pedestrian crowd flow problem of the presence of an obstruction in a two-dimensional continuous walking facility. The numerical results indicate the rationality of the model and the effectiveness of the computational algorithm in predicting the flux or density distribution and the macroscopic behavior of the pedestrian crowd flow. The simulation results are compared with those obtained by the two-dimensional Lighthill–Whitham–Richards pedestrian flow model with various model parameters, which further shows that the macroscopic model is able to correctly describe complex phenomena such as “stop-and-go waves” observed in empirical pedestrian flows.
Keywords: Pedestrian crowd dynamics; Path choice; Linear stability analysis; Traffic instability; Unstructured meshes; Obstruction (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110003808
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:21:p:4623-4635
DOI: 10.1016/j.physa.2010.05.003
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().