Hybrid projective synchronization of chaotic fractional order systems with different dimensions
Sha Wang,
Yongguang Yu and
Miao Diao
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 21, 4981-4988
Abstract:
The hybrid projective synchronization of different dimensional fractional order chaotic systems is investigated in this paper. It is shown that the slave system can be synchronized with the projection of the master system generated through state transformation. Based on the stability theorem of linear fractional order systems, a suitable controller for achieving the synchronization is given. The hybrid projective synchronization between the fractional order chaotic system and hyperchaotic system is successfully achieved in both reduced order and increased order. The corresponding numerical results verify the effectiveness of the proposed method.
Keywords: Hybrid projective synchronization; Chaotic fractional order systems; Different dimensions (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110005960
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:21:p:4981-4988
DOI: 10.1016/j.physa.2010.06.048
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().