The Peter principle revisited: A computational study
Alessandro Pluchino,
Andrea Rapisarda and
Cesare Garofalo
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 3, 467-472
Abstract:
In the late sixties the Canadian psychologist Laurence J. Peter advanced an apparently paradoxical principle, named since then after him, which can be summarized as follows: ‘Every new member in a hierarchical organization climbs the hierarchy until he/she reaches his/her level of maximum incompetence’. Despite its apparent unreasonableness, such a principle would realistically act in any organization where the mechanism of promotion rewards the best members and where the competence at their new level in the hierarchical structure does not depend on the competence they had at the previous level, usually because the tasks of the levels are very different to each other. Here we show, by means of agent based simulations, that if the latter two features actually hold in a given model of an organization with a hierarchical structure, then not only is the Peter principle unavoidable, but also it yields in turn a significant reduction of the global efficiency of the organization. Within a game theory-like approach, we explore different promotion strategies and we find, counterintuitively, that in order to avoid such an effect the best ways for improving the efficiency of a given organization are either to promote each time an agent at random or to promote randomly the best and the worst members in terms of competence.
Keywords: Peter principle; Organizations efficiency; Agent based models (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710900822X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:3:p:467-472
DOI: 10.1016/j.physa.2009.09.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().