Attack structural vulnerability of power grids: A hybrid approach based on complex networks
Guo Chen,
Zhao Yang Dong,
David J. Hill,
Guo Hua Zhang and
Ke Qian Hua
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 3, 595-603
Abstract:
Power grids have been studied as a typical example of real-world complex networks. Different from previous methods, this paper proposes a hybrid approach for structural vulnerability analysis of power transmission networks, in which a DC power flow model with hidden failures is embedded into the traditional error and attack tolerance methodology to form a new scheme for power grids vulnerability assessment and modeling. The new approach embodies some important characteristics of power transmission networks. Furthermore, the simulation on the standard IEEE 118 bus system demonstrates that a critical region might exist and when the power grid operates in the region, it is vulnerable to both random and intentional attacks. Finally, a brief theoretical analysis is presented to explain the new phenomena.
Keywords: Power grids; Complex networks; Vulnerability; Power flow equations (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109008164
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:3:p:595-603
DOI: 10.1016/j.physa.2009.09.039
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().