A packet routing strategy using neural networks on scale-free networks
Yuki Naganuma and
Akito Igarashi
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 3, 623-628
Abstract:
We propose a dynamic packet routing strategy by using neural networks on scale-free networks. In this strategy, in order to determine the nodes to which the packets should be transmitted, we use path lengths to the destinations of the packets, and adjust the connection weights of the neural networks attached to the nodes from local information and the path lengths. The performances of this strategy on scale-free networks which have the same degree distribution and different degree correlations are compared to one another. Our numerical simulations confirm that this routing strategy is more effective than the shortest path based strategy on scale-free networks with any degree correlations and that the performance of our strategy on assortative scale-free networks is better than that on disassortative and uncorrelated scale-free networks.
Keywords: Neural network; Computer network; Packet routing; Complex network; Scale-free network (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109008255
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:3:p:623-628
DOI: 10.1016/j.physa.2009.09.048
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().