EconPapers    
Economics at your fingertips  
 

Jensen–Shannon divergence in conjugate spaces: The entropy excess of atomic systems and sets with respect to their constituents

Juan C. Angulo, Juan Antolín, Sheila López-Rosa and Rodolfo O. Esquivel

Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 4, 899-907

Abstract: The disorder of a composite system or of a set of different systems is always higher than the mere sum of the internal disorder of its constituents. One of the most widely used functionals employed for measuring the randomness of a single distribution is the Shannon entropy, from which the increase of disorder within the composite system with respect to those of the constituents is quantified by means of the Jensen–Shannon Divergence (JSD). In this work two different applications of the JSD in the study of the information content of atomic electron densities are carried out: (i) finding the contribution for a given atom of its composing subshells to the total atomic information; (ii) and similarly for selected sets of atoms, such as periods and groups throughout the Periodic Table as well as isoelectronic series. In both cases, the analysis is performed in the two conjugate position and momentum spaces, and the results are interpreted according to physically relevant quantities such as the ionization potential.

Keywords: Divergence; Shannon entropy; Kullback–Leibler relative entropy; Atomic shell structure (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109008735
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:4:p:899-907

DOI: 10.1016/j.physa.2009.10.023

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:899-907