Universal power laws in the threshold network model: A theoretical analysis based on extreme value theory
A. Fujihara,
M. Uchida and
H. Miwa
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 5, 1124-1130
Abstract:
We theoretically and numerically investigated the threshold network model with a generic weight function where there were a large number of nodes and a high threshold. Our analysis was based on extreme value theory, which gave us a theoretical understanding of the distribution of independent and identically distributed random variables within a sufficiently high range. Specifically, the distribution could be generally expressed by a generalized Pareto distribution, which enabled us to formulate the generic weight distribution function. By using the theorem, we obtained the exact expressions of degree distribution and clustering coefficient which behaved as universal power laws within certain ranges of degrees. We also compared the theoretical predictions with numerical results and found that they were extremely consistent.
Keywords: Complex networks; Threshold network model; Extreme value theory; Power laws (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109009121
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:5:p:1124-1130
DOI: 10.1016/j.physa.2009.11.002
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().