Collaborative filtering with diffusion-based similarity on tripartite graphs
Ming-Sheng Shang,
Zi-Ke Zhang,
Tao Zhou and
Yi-Cheng Zhang
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 6, 1259-1264
Abstract:
Collaborative tags are playing a more and more important role for the organization of information systems. In this paper, we study a personalized recommendation model making use of the ternary relations among users, objects and tags. We propose a measure of user similarity based on his preference and tagging information. Two kinds of similarities between users are calculated by using a diffusion-based process, which are then integrated for recommendation. We test the proposed method in a standard collaborative filtering framework with three metrics: ranking score, Recall and Precision, and demonstrate that it performs better than the commonly used cosine similarity.
Keywords: Recommender systems; Collaborative filtering; Diffusion-based similarity; Collaborative tagging systems; Infophysics (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109009753
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:6:p:1259-1264
DOI: 10.1016/j.physa.2009.11.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().