EconPapers    
Economics at your fingertips  
 

Planar unclustered scale-free graphs as models for technological and biological networks

Alicia Miralles, Francesc Comellas, Lichao Chen and Zhongzhi Zhang

Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 9, 1955-1964

Abstract: Many real life networks present an average path length logarithmic with the number of nodes and a degree distribution which follows a power law. Often these networks have also a modular and self-similar structure and, in some cases — usually associated with topological restrictions — their clustering is low and they are almost planar. In this paper we introduce a family of graphs which share all these properties and are defined by two parameters. As their construction is deterministic, we obtain exact analytic expressions for relevant properties of the graphs including the degree distribution, degree correlation, diameter, and average distance, as a function of the two defining parameters. Thus, the graphs are useful to model some complex networks, in particular several families of technological and biological networks, and in the design of new practical communication algorithms in relation to their dynamical processes. They can also help understanding the underlying mechanisms that have produced their particular structure.

Keywords: Complex networks; Scale-free networks; Self-similar graphs; Modular graphs; Planar graphs (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710901070X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:9:p:1955-1964

DOI: 10.1016/j.physa.2009.12.056

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:389:y:2010:i:9:p:1955-1964