EconPapers    
Economics at your fingertips  
 

On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise robustness

Mikhail I. Bogachev and Armin Bunde

Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 12, 2240-2250

Abstract: We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.

Keywords: Long-range memory; Extreme events; Multifractality; Return intervals; Pattern recognition; Prediction (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111001506
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:12:p:2240-2250

DOI: 10.1016/j.physa.2011.02.024

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:390:y:2011:i:12:p:2240-2250