Low-temperature phases obtained by linear programming: An application to a lattice system of model chiral molecules
Medved’, Igor,
Anton Trník and
Dale A. Huckaby
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 17, 3002-3019
Abstract:
A convenient, Peierls-type approach to obtain low-temperature phases is to use the method of an m-potential. In this paper we show that, for more complex systems where it may be rather difficult to rewrite the Hamiltonian as an m-potential and whose configurations are subject to linear constraints, the verification of the Peierls condition can be reformulated as a linear programming problem. Before introducing this novel strategy for a general lattice system, we compare it with the m-potential method for a specific model molecular system consisting of an equimolar mixture of a chiral molecule and its non-superimposable mirror image that occupy all the sites of a honeycomb lattice. In one range of interactions, we prove that a racemic low-temperature phase occurs (containing equal numbers of each enantiomer). However, in a neighboring range of interactions, we show that a homochiral low-temperature phase (containing a single enantiomer) exists, and thus chiral segregation occurs in the system. Our linear programming technique yields these results in wider ranges of interactions than the m-potential method.
Keywords: Low-temperature phases; Ground states; Peierls condition; Chiral molecules (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111002779
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:17:p:3002-3019
DOI: 10.1016/j.physa.2011.03.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().