Ranking of predictor variables based on effect size criterion provides an accurate means of automatically classifying opinion column articles
Erika Fille Legara,
Christopher Monterola and
Cheryl Abundo
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 1, 110-119
Abstract:
We demonstrate an accurate procedure based on linear discriminant analysis that allows automatic authorship classification of opinion column articles. First, we extract the following stylometric features of 157 column articles from four authors: statistics on high frequency words, number of words per sentence, and number of sentences per paragraph. Then, by systematically ranking these features based on an effect size criterion, we show that we can achieve an average classification accuracy of 93% for the test set. In comparison, frequency size based ranking has an average accuracy of 80%. The highest possible average classification accuracy of our data merely relying on chance is ∼31%. By carrying out sensitivity analysis, we show that the effect size criterion is superior than frequency ranking because there exist low frequency words that significantly contribute to successful author discrimination. Consistent results are seen when the procedure is applied in classifying the undisputed Federalist papers of Alexander Hamilton and James Madison. To the best of our knowledge, the work is the first attempt in classifying opinion column articles, that by virtue of being shorter in length (as compared to novels or short stories), are more prone to over-fitting issues. The near perfect classification for the longer papers supports this claim. Our results provide an important insight on authorship attribution that has been overlooked in previous studies: that ranking discriminant variables based on word frequency counts is not necessarily an optimal procedure.
Keywords: Author identification analysis; Effect size criterion; Linear discriminant analysis (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110002207
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:1:p:110-119
DOI: 10.1016/j.physa.2010.03.016
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().