EconPapers    
Economics at your fingertips  
 

A note on fractional linear pure birth and pure death processes in epidemic models

Roberto Garra and Federico Polito

Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 21, 3704-3709

Abstract: In this note we highlight the role of fractional linear birth and linear death processes, recently studied in Orsingher et al. (2010) [5] and Orsingher and Polito (2010) [6], in relation to epidemic models with empirical power law distribution of the events. Taking inspiration from a formal analogy between the equation for self-consistency of the epidemic type aftershock sequences (ETAS) model and the fractional differential equation describing the mean value of fractional linear growth processes, we show some interesting applications of fractional modelling in studying ab initio epidemic processes without the assumption of any empirical distribution. We also show that, in the framework of fractional modelling, subcritical regimes can be linked to linear fractional death processes and supercritical regimes to linear fractional birth processes.

Keywords: ETAS model; Fractional branching; Birth process; Death process; Mittag-Leffler functions; Wiener–Hopf integral (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111004523
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:21:p:3704-3709

DOI: 10.1016/j.physa.2011.06.005

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:390:y:2011:i:21:p:3704-3709