EconPapers    
Economics at your fingertips  
 

Physical complexity of variable length symbolic sequences

Gerard Briscoe and Philippe De Wilde

Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 21, 3732-3741

Abstract: A measure called physical complexity is established and calculated for a population of sequences, based on statistical physics, automata theory, and information theory. It is a measure of the quantity of information in an organism’s genome. It is based on Shannon’s entropy, measuring the information in a population evolved in its environment, by using entropy to estimate the randomness in the genome. It is calculated from the difference between the maximal entropy of the population and the actual entropy of the population when in its environment, estimated by counting the number of fixed loci in the sequences of a population. Up until now, physical complexity has only been formulated for populations of sequences with the same length. Here, we investigate an extension to support variable length populations. We then build upon this to construct a measure for the efficiency of information storage, which we later use in understanding clustering within populations. Finally, we investigate our extended physical complexity through simulations, showing it to be consistent with the original.

Keywords: Complexity; Entropy; Clustering; Evolution; Population (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111004729
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:21:p:3732-3741

DOI: 10.1016/j.physa.2011.06.025

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:390:y:2011:i:21:p:3732-3741