EconPapers    
Economics at your fingertips  
 

Pathlength scaling in graphs with incomplete navigational information

Sang Hoon Lee and Petter Holme

Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 21, 3996-4001

Abstract: The graph-navigability problem concerns how one can find as short paths as possible between a pair of vertices, given an incomplete picture of a graph. We study the navigability of graphs where the vertices are tagged by a number (between 1 and the total number of vertices) in a way to aid navigation. This information is too little to ensure errorfree navigation but enough, as we will show, for the agents to do significantly better than a random walk. In our setup, given a graph, we first assign information to the vertices that agents can utilize for their navigation. To evaluate the navigation, we calculate the average distance traveled over random pairs of source and target and different graph realizations. We show that this type of embedding can be made quite efficiently; the more information is embedded, the more efficient it gets. We also investigate the embedded navigational information in a standard graph layout algorithm and find that although this information does not make algorithms as efficient as the above-mentioned schemes, it is significantly helpful.

Keywords: Graph routing; Geometric routing; Navigability (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111004687
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:21:p:3996-4001

DOI: 10.1016/j.physa.2011.06.021

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:390:y:2011:i:21:p:3996-4001