Dissolution of traffic jam via additional local interactions
Hyun Keun Lee and
Beom Jun Kim
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 23, 4555-4561
Abstract:
We use a cellular automata approach to numerically investigate traffic flow patterns on a single lane. The free-flow phase (F), the synchronized phase (S), and the jam phase (J) are observed and the transitions among them are studied as the vehicular density ρ is slowly varied. If ρ is decreased from well inside the J phase, the flux Φ follows the lower branch of the hysteresis loop, implying that the adiabatic decrease of ρ is not an efficient way to put the system back into S or F phases. We propose a simple way to help the system to escape out of J phase, which is based on the local information of the velocities of downstream vehicles.
Keywords: Traffic phases; Cellular automata; Traffic jam; Local interaction; Hysteresis; Phase transition (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111005802
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:23:p:4555-4561
DOI: 10.1016/j.physa.2011.07.033
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().