EconPapers    
Economics at your fingertips  
 

Generating random graphs with tunable clustering coefficients

Lenwood S. Heath and Nidhi Parikh

Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 23, 4577-4587

Abstract: Most real-world networks exhibit a high clustering coefficient—the probability that two neighbors of a node are also neighbors of each other. We propose two algorithms, Conf and Throw, that take triangle and single edge degree sequences as input and generate a random graph with a target clustering coefficient. We analyze them theoretically for the case of a regular graph. Conf generates a random graph with the input degree sequence and the clustering coefficient anticipated from the input. Experimental results match quite well with the anticipated clustering coefficient except for highly dense graphs, in which case the experimental clustering coefficient is higher than the anticipated value. For Throw, the degree sequence and the clustering coefficient of the generated graph varies from the input. However, it maintains the expected degree distribution, and the clustering coefficient of the generated graph can also be predicted using analytical results. Experiments show that, for Throw, the results match quite well with the analytical results. Typically, only information about degree distribution is available. We also propose an algorithm Deg that takes degree sequence and clustering coefficient as input and generates a graph with the same properties. Experiments show results for Deg that are quite similar to those for Conf.

Keywords: Clustering coefficient; Complex networks; Random graphs; Algorithms (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111004997
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:23:p:4577-4587

DOI: 10.1016/j.physa.2011.06.052

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4577-4587