Effective coefficients of quasi-steady Maxwell’s equations with multiscale isotropic random conductivity
E.P. Kurochkina and
O.N. Soboleva
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 2, 231-244
Abstract:
The effective coefficients in the quasi-steady Maxwell’s equations are calculated for a multiscale isotropic medium by using a subgrid modeling approach. The conductivity is mathematically represented by a Kolmogorov multiplicative continuous cascade with a lognormal probability distribution. The scale of the solution domain is assumed to be large as compared with the scale of heterogeneities of the medium. The theoretical results obtained in the paper are compared with the results of a direct 3D numerical simulation and the results of the conventional perturbation theory.
Keywords: Quasi-steady Maxwell’s equations; Effective coefficients; Subgrid modeling; Multiscale random conductivity (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110008277
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:2:p:231-244
DOI: 10.1016/j.physa.2010.09.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().