Cross-correlation and the predictability of financial return series
Wen-Qi Duan and
H. Eugene Stanley
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 2, 290-296
Abstract:
This paper examines whether we can improve the predictability of financial return series by exploiting the effect of cross-correlations among different financial markets. We forecast financial return series based on the support vector machines (SVM) method, which can surpass the random-walk model consistently. By comparing the mean absolute errors and the root mean squared errors, we show that it is hard to improve the predictability of financial return series by incorporating correlated return series into SVM-based forecasting models, even though there are Granger causal relationships among them.
Keywords: Cross-correlation; Predictability; Support vector machines (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110007934
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:2:p:290-296
DOI: 10.1016/j.physa.2010.09.013
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().