Quantum game interpretation for a special case of Parrondo’s paradox
Yong-fei Zhu,
Neng-gang Xie,
Ye Ye and
Fa-rui Peng
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 4, 579-586
Abstract:
By using the discrete Markov chain method, Parrondo’s paradox is studied by means of theoretical analysis and computer simulation, built on the case of game AB played in alternation with modulus M=4. We find that such a case does not have a definite stationary probability distribution and that payoffs of the game depend on the parity of the initial capital. Besides, this paper reveals the phenomenon that “processing in order produces non-deterministic results, while a random process produces deterministic results”. The quantum game method is used in a further study. The results show that the explanation of the game corresponding to a stationary probability distribution is that the probability of the initial capital has reached parity.
Keywords: Parrondo’s paradox; Quantum game; Markov chain; Computer simulation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110009180
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:4:p:579-586
DOI: 10.1016/j.physa.2010.10.039
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().