Commodity predictability analysis with a permutation information theory approach
Luciano Zunino,
Benjamin Tabak,
Francesco Serinaldi,
Massimiliano Zanin,
Darío G. Pérez and
Osvaldo A. Rosso
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 5, 876-890
Abstract:
It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity–entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity–entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891–1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02–2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity–entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable.
Keywords: Commodity efficiency; Complexity–entropy causality plane; Permutation entropy; Permutation statistical complexity; Bandt and Pompe method; Ordinal time series analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110009842
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:5:p:876-890
DOI: 10.1016/j.physa.2010.11.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().