Detecting communities in clustered networks based on group action on set
Zhanli Zhang,
Xin Jiang,
Lili Ma,
Shaoting Tang and
Zhiming Zheng
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 6, 1171-1181
Abstract:
In this paper, we propose a well targeted algorithm (GAS algorithm) for detecting communities in high clustered networks by presenting group action technology on community division. During the processing of this algorithm, the underlying community structure of a clustered network emerges simultaneously as the corresponding partition of orbits by the permutation groups acting on the node set are achieved. As the derivation of the orbit partition, an algebraic structure r-cycle can be considered as the origin of the community. To be a priori estimation for the community structure of the algorithm, the community separability is introduced to indicate whether a network has distinct community structure. By executing the algorithm on several typical networks and the LFR benchmark, it shows that this GAS algorithm can detect communities accurately and effectively in high clustered networks. Furthermore, we compare the GAS algorithm and the clique percolation algorithm on the LFR benchmark. It is shown that the GAS algorithm is more accurate at detecting non-overlapping communities in clustered networks. It is suggested that algebraic techniques can uncover fresh light on detecting communities in complex networks.
Keywords: Community separability; Algebraic configuration; r-cycle; Algorithm (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110009933
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:6:p:1171-1181
DOI: 10.1016/j.physa.2010.11.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().