Heavy-tailed targets and (ab)normal asymptotics in diffusive motion
Piotr Garbaczewski,
Vladimir Stephanovich and
Dariusz Kȩdzierski
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 6, 990-1008
Abstract:
We show that, under suitable confinement conditions, the ordinary Fokker–Planck equation may generate non-Gaussian heavy-tailed probability density functions (pdfs) (like, for example, Cauchy or more general Lévy stable distributions) in its long-time asymptotics. In fact, all heavy-tailed pdfs known in the literature can be obtained this way. For the underlying diffusion-type processes, our main focus is on their transient regimes and specifically the crossover features, when an initially infinite number of pdf moments decreases to a few or none at all. The time dependence of the variance (if in existence), ∼tγ with 0<γ<2, may in principle be interpreted as a signature of subdiffusive, normal diffusive or superdiffusive behavior under confining conditions; the exponent γ is generically well defined in substantial periods of time. However, there is no indication of any universal time rate hierarchy, due to a proper choice of the driver and/or external potential.
Keywords: Diffusive processes; Jump-type processes; Random processes; Fokker–Planck equation; Lévy-stable distribution (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110010058
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:6:p:990-1008
DOI: 10.1016/j.physa.2010.11.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().