Asset returns and volatility clustering in financial time series
Jie-Jun Tseng and
Sai-Ping Li
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 7, 1300-1314
Abstract:
An analysis of the stylized facts in financial time series is carried out. We find that, instead of the heavy tails in asset return distributions, the slow decay behaviour in autocorrelation functions of absolute returns is actually directly related to the degree of clustering of large fluctuations within the financial time series. We also introduce an index to quantitatively measure the clustering behaviour of fluctuations in these time series and show that big losses in financial markets usually lump more severely than big gains. We further give examples to demonstrate that comparing to conventional methods, our index enables one to extract more information from the financial time series.
Keywords: Econophysics; Volatility clustering; Heavy-tailed distribution; Financial stylized facts (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110010137
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:7:p:1300-1314
DOI: 10.1016/j.physa.2010.12.002
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().