EconPapers    
Economics at your fingertips  
 

The Bethe lattice treatment of sound attenuation for a spin- 3/2 Ising model

Tunç Cengiz and Erhan Albayrak

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 10, 2948-2956

Abstract: The sound attenuation phenomena is investigated for a spin- 3/2 Ising model on the Bethe lattice in terms of the recursion relations by using the Onsager theory of irreversible thermodynamics. The dependencies of sound attenuation on the temperature (T), frequency (w), Onsager coefficient (γ) and external magnetic field (H) near the second-order (Tc) and first-order (Tt) phase transition temperatures are examined for given coordination numbers q on the Bethe lattice. It is assumed that the sound wave couples to the order-parameter fluctuations which decay mainly via the order-parameter relaxation process, thus two relaxation times are obtained and which are used to obtain an expression for the sound attenuation coefficient (α). Our investigations revealed that only one peak is obtained near Tt and three peaks are found near Tc when the Onsager coefficient is varied at a given constant frequency for q=3. Fixing the Onsager coefficient and varying the frequency always leads to two peaks for q=3,4 and 6 near Tc. The sound attenuation peaks are observed near Tt at lower values of external magnetic field, but as it increases the sound attenuation peaks decrease and eventually disappear.

Keywords: Sound attenuation; Onsager coefficients; Bethe lattice; Spin- 3/2 (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112000581
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:10:p:2948-2956

DOI: 10.1016/j.physa.2012.01.032

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:10:p:2948-2956