Team-moving effect in bi-direction pedestrian flow
Ziyang Wang,
Bingxue Song,
Yong Qin and
Limin Jia
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 11, 3119-3128
Abstract:
We propose a cellular automation model to simulate team-moving behavior in bi-directional pedestrian flow. The moving rules for double-pedestrian teaming include the constraint that pedestrians remain on adjacent cells. Phase transition, critical density — team number, velocity–density, and flow–density relationships are key component parts of the analysis. Simulations show that team-moving produces significant corridor capacity effects, and effects highly depend on the type of teaming behavior. In daily life, pedestrians prefer traverse teaming; under this bias, as teaming pedestrians increase in number, critical density reduces; that means traverse teaming will weaken the capacity of the corridor. The effect of traverse team-moving is nonlinear, and capacity will continually reduce as the team numbers increase; however, reduction rate will decay. We call this phenomenon, “the marginal utility of team-moving.”
Keywords: Team-moving; Pedestrian movement; Cellular automation; Corridor capacity; Marginal utility of team-moving (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112000155
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:11:p:3119-3128
DOI: 10.1016/j.physa.2011.12.066
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().