EconPapers    
Economics at your fingertips  
 

On generalisations of the log-Normal distribution by means of a new product definition in the Kapteyn process

Sílvio M. Duarte Queirós

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 13, 3594-3606

Abstract: We discuss the modification of the Kapteyn multiplicative process using the q-product of Borges [E.P. Borges, A possible deformed algebra and calculus inspired in nonextensive thermostatistics, Physica A 340 (2004) 95]. Depending on the value of the index q a generalisation of the log-Normal distribution is yielded. Namely, the distribution increases the tail for small (when q<1) or large (when q>1) values of the variable upon analysis. The usual log-Normal distribution is retrieved when q=1, which corresponds to the traditional Kapteyn multiplicative process. The main statistical features of this distribution as well as related random number generators and tables of quantiles of the Kolmogorov–Smirnov distance are presented. Finally, we illustrate the validity of this scenario by describing a set of variables of biological and financial origin.

Keywords: Generalised log-Normal; Kapteyn multiplicative process; Metabolic networks; q-product; Volatility (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112000945
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:13:p:3594-3606

DOI: 10.1016/j.physa.2012.01.050

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:13:p:3594-3606