Dynamical behavior of the Niedermayer algorithm applied to Potts models
D. Girardi,
T.J.P. Penna and
N.S. Branco
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 15, 3849-3857
Abstract:
In this work, we make a numerical study of the dynamic universality class of the Niedermayer algorithm applied to the two-dimensional Potts model with 2, 3, and 4 states. This algorithm updates clusters of spins and has a free parameter, E0, which controls the size of these clusters, such that E0=1 is the Metropolis algorithm and E0=0 regains the Wolff algorithm, for the Potts model. For −10, spins in different states may be added to the cluster but the dynamic behavior is less efficient than for the Wolff algorithm (E0=0). Therefore, our results show that the Wolff algorithm is the best choice for Potts models, when compared to the Niedermayer’s generalization.
Keywords: Numerical simulation; Cluster algorithms; Potts model; Dynamic universality class (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112002300
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:15:p:3849-3857
DOI: 10.1016/j.physa.2012.03.011
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().