Formation and synchronization of autocatalytic noise-sustained structures under Poiseuille flow
Alejandro D. Sánchez,
Gonzalo G. Izús and
Roberto R. Deza
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 16, 4070-4080
Abstract:
The formation and synchronization of 2D noise-sustained structures are investigated for Gray–Scott kinetics in packed-bed reactors under Poiseuille flows, when identical systems are submitted to independent spatiotemporal Gaussian white noise sources. A finite-wavelength instability is theoretically predicted and numerically confirmed for uncoupled reactors. In particular, noise-sustained structures that flow with viscous boundary conditions are numerically observed above threshold. When the systems are coupled in master–slave configuration, the numerical simulations show that the slave system replicates to a very high degree of precision the convective patterns arising in the master one due to the selective amplification of noise. The nature of the synchronization and the stability of the synchronization manifold are elucidated.
Keywords: DIFICI; NSS; Gray–Scott; Synchronization; Stability (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112000428
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:16:p:4070-4080
DOI: 10.1016/j.physa.2012.01.016
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().