A model of partial differential equations for HIV propagation in lymph nodes
E.B.S. Marinho,
F.S. Bacelar and
R.F.S. Andrade
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 1, 132-141
Abstract:
A system of partial differential equations is used to model the dissemination of the Human Immunodeficiency Virus (HIV) in CD4+T cells within lymph nodes. Besides diffusion terms, the model also includes a time-delay dependence to describe the time lag required by the immunologic system to provide defenses to new virus strains. The resulting dynamics strongly depends on the properties of the invariant sets of the model, consisting of three fixed points related to the time independent and spatial homogeneous tissue configurations in healthy and infected states. A region in the parameter space is considered, for which the time dependence of the space averaged model variables follows the clinical pattern reported for infected patients: a short scale primary infection, followed by a long latency period of almost complete recovery and third phase characterized by damped oscillations around a value with large HIV counting. Depending on the value of the diffusion coefficient, the latency time increases with respect to that one obtained for the space homogeneous version of the model. It is found that same initial conditions lead to quite different spatial patterns, which depend strongly on the latency interval.
Keywords: Partial differential equation; HIV infection; Pattern formation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111006510
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:1:p:132-141
DOI: 10.1016/j.physa.2011.08.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().