Information theory and renormalization group flows
S.M. Apenko
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 1, 62-77
Abstract:
We present a possible approach to the study of the renormalization group (RG) flow based entirely on the information theory. The average information loss under a single step of Wilsonian RG transformation is evaluated as a conditional entropy of the fast variables, which are integrated out, when the slow ones are held fixed. Its positivity results in the monotonic decrease of the informational entropy under renormalization. This, however, does not necessarily imply the irreversibility of the RG flow, because entropy is an extensive quantity and explicitly depends on the total number of degrees of freedom, which is reduced. Only some size-independent additive part of the entropy could possibly provide the required Lyapunov function. We also introduce a mutual information of fast and slow variables as probably a more adequate quantity to represent the changes in the system under renormalization and evaluate it for some simple systems. It is shown that for certain real space decimation transformations the positivity of the mutual information directly leads to the monotonic growth of the entropy per lattice site along the RG flow and hence to its irreversibility.
Keywords: Renormalization; Irreversibility; Entropy; Mutual information (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711100642X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:1:p:62-77
DOI: 10.1016/j.physa.2011.08.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().