Frequency–rank correlations of rhodopsin mutations with tuned hydropathic roughness based on self-organized criticality
J.C. Phillips
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5473-5478
Abstract:
The behavior of disease-linked mutations of membrane proteins is especially simple in rhodopsin, where they are well-studied, as they are responsible for retinitis pigmentosa, RP (retinal degeneration). Here we show that the frequency of occurrence of single RP mutations is strongly influenced by their transportational survival rates, and that this survival correlates well (82%) with a long-range, non-local hydropathic measure of the roughness of the water interfaces of ex-membrane rhodopsin based on self-organized criticality (SOC). It is speculated that this concept may be generally useful in studying survival rates of many mutated proteins.
Keywords: Membrane; Protein; Hydrophobicity; Fold (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005249
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5473-5478
DOI: 10.1016/j.physa.2012.06.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().