EconPapers    
Economics at your fingertips  
 

Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?

Yu Wei

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5546-5556

Abstract: In most previous works on forecasting oil market volatility, squared daily returns were taken as the proxy of unobserved actual volatility. However, as demonstrated by Andersen and Bollerslev (1998) [22], this proxy with too high measurement noise could be perfectly outperformed by a so-called realized volatility (RV) measure calculated by the cumulative sum of squared intraday returns. With this motivation, we further extend earlier works by employing intraday high-frequency data to compare the performance of three typical volatility models in the daily out-of-sample volatility forecasting of fuel oil futures on the Shanghai Futures Exchange (SHFE): the GARCH-type, stochastic volatility (SV) and realized volatility models. By taking RV as the proxy of actual daily volatility and then computing forecasting errors, we find that the realized volatility model based on intraday high-frequency data produces significantly more accurate volatility forecasts than the GARCH-type and SV models based on daily returns. Furthermore, the SV model outperforms many linear and nonlinear GARCH-type models that capture long-memory volatility and/or the asymmetric leverage effect in volatility. These results also prove that abundant volatility information is available in intraday high-frequency data, and can be used to construct more accurate oil volatility forecasting models.

Keywords: Oil futures; Volatility forecasting; Realized volatility (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005146
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5546-5556

DOI: 10.1016/j.physa.2011.08.071

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5546-5556