Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm
Chuang Liu and
Wei-Xing Zhou
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5704-5711
Abstract:
Network-based recommendation algorithms for user–object link predictions have achieved significant developments in recent years. For bipartite graphs, the resource reallocation in such algorithms is analogous to heat spreading (HeatS) or probability spreading (ProbS) processes. The best algorithm to date is a hybrid of the HeatS and ProbS techniques with homogeneous initial resource configurations, which fulfills simultaneously high accuracy and large diversity requirements. We investigate the effect of heterogeneity in initial configurations on the HeatS + ProbS hybrid algorithm and find that both recommendation accuracy and diversity can be further improved in this new setting. Numerical experiments show that the improvement is robust.
Keywords: Recommender system; Bipartite graph; Network-based recommendation; Recommendation accuracy; Recommendation diversity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005389
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5704-5711
DOI: 10.1016/j.physa.2012.06.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().