Combining content and relation analysis for recommendation in social tagging systems
Yin Zhang,
Bin Zhang,
Kening Gao,
Pengwei Guo and
Daming Sun
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5759-5768
Abstract:
Social tagging is one of the most important ways to organize and index online resources. Recommendation in social tagging systems, e.g. tag recommendation, item recommendation and user recommendation, is used to improve the quality of tags and to ease the tagging or searching process. Existing works usually provide recommendations by analyzing relation information in social tagging systems, suffering a lot from the over sparse problem. These approaches ignore information contained in the content of resources, which we believe should be considered to improve recommendation quality and to deal with the over sparse problem. In this paper we propose a recommendation approach for social tagging systems that combines content and relation analysis in a single model. By modeling the generating process of social tagging systems in a latent Dirichlet allocation approach, we build a fully generative model for social tagging, leverage it to estimate the relation between users, tags and resources and achieve tag, item and user recommendation tasks. The model is evaluated using a CiteULike data snapshot, and results show improvements in metrics for various recommendation tasks.
Keywords: Social tagging; Recommendation; Hybrid model; Latent Dirichlet allocation; Infophysics (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112003846
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5759-5768
DOI: 10.1016/j.physa.2012.05.013
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().