Dual-phase-lag transfer equations and entropy behavior in relaxational hydrodynamics
S.I. Serdyukov
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 23, 5871-5882
Abstract:
Extended thermodynamics of irreversible processes is developed; based on two postulates by which additional variables of the entropy density are dissipative fluxes and material time derivatives of the ordinary thermodynamic variables. Within these theories a more general approximation of entropy production is obtained. As a consequence of the proposed formalism, the constitutive dual-phase-lag equations, as well as equations of the conventional version of extended irreversible thermodynamics are obtained. The behavior of the entropy during oscillatory approach to equilibrium is considered. The proposed theory leads to a strictly monotonic dependency of the entropy on time.
Keywords: Extended irreversible thermodynamics; Entropy behavior; Dual-phase-lag equations; Postulates of thermodynamics (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005493
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:23:p:5871-5882
DOI: 10.1016/j.physa.2012.06.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().