Pattern formation in a predator–prey model with spatial effect
Lin Xue
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 23, 5987-5996
Abstract:
In this paper, spatial dynamics in the Beddington–DeAngelis predator–prey model with self-diffusion and cross-diffusion is investigated. We analyze the linear stability and obtain the condition of Turing instability of this model. Moreover, we deduce the amplitude equations and determine the stability of different patterns. Numerical simulations show that this system exhibits complex dynamical behaviors. In the Turing space, we find three types of typical patterns. One is the coexistence of hexagon patterns and stripe patterns. The other two are hexagon patterns of different types. The obtained results well enrich the finding in predator–prey models with Beddington–DeAngelis functional response.
Keywords: Predator–prey model; Beddington–DeAngelis; Cross-diffusion; Amplitude equations; Pattern selection (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711200533X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:23:p:5987-5996
DOI: 10.1016/j.physa.2012.06.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().