Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise
Ming Li and
Wei Zhao
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 24, 6268-6278
Abstract:
We suggest that there exists a critical point H=0.70 of the local Hölder exponent H(t) for describing the weak stationary (stationary for short) property of the modified multifractional Gaussian noise (mmGn) from the point of view of engineering. More precisely, when H(t)>0.70 for t∈[0,∞], the stationarity of mmGn is conditional, relying on the variation ranges of H(t). When H(t)≤0.70, on the other side, mmGn is unconditionally stationary, yielding a consequence that short-memory mmGn is stationary. In addition, for H(t)>0.70, we introduce the concept of stationary range denoted by (Hmin,Hmax). It means that Corr[r(τ;H(t1)),r(τ;H(t2))]≥0.70 if H(t1), H(t2)∈(Hmin,Hmax), where r(τ;H(t1)) and r(τ;H(t2)) are the autocorrelation functions of mmGn with H(t1) and H(t2) for t1≠t2, respectively, and Corr[r(τ;H(t1)),r(τ;H(t2))] is the correlation coefficient between r(τ;H(t1)) and r(τ;H(t2)). We present a set of stationary ranges, which may be used for a quantitative description of the local stationarity of mmGn. A case study is demonstrated for applying the present method to testing the stationarity of a real-traffic trace.
Keywords: Modified multifractional Gaussian noise; Locally weak stationarity; Autocorrelation function; Hölder exponent (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112007121
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:24:p:6268-6278
DOI: 10.1016/j.physa.2012.07.043
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().