Research on the relationship between the multifractality and long memory of realized volatility in the SSECI
Zhanliang Jia,
Meilan Cui and
Handong Li
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 3, 740-749
Abstract:
We examine the multifractal properties of the realized volatility (RV) and realized bipower variation (RBV) series in the Shanghai Stock Exchange Composite Index (SSECI) by using the multifractal detrended fluctuation analysis (MF-DFA) method. We find that there exist distinct multifractal characteristics in the volatility series. The contributions of two different types of source of multifractality, namely, fat-tailed probability distributions and nonlinear temporal correlations, are studied. By using the unit root test, we also find the strength of the multifractality of the volatility time series is insensitive to the sampling frequency but that the long memory of these series is sensitive.
Keywords: MF-DFA; Multifractality; Long memory; Realized volatility; Realized bipower variation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007060
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:3:p:740-749
DOI: 10.1016/j.physa.2011.08.060
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().