Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime
Jun Wang,
Jin-Rong Liang,
Long-Jin Lv,
Wei-Yuan Qiu and
Fu-Yao Ren
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 3, 750-759
Abstract:
In this paper, we study the problem of continuous time option pricing with transaction costs by using the homogeneous subdiffusive fractional Brownian motion (HFBM) Z(t)=X(Sα(t)), 0<α<1, here dX(τ)=μX(τ)(dτ)2H+σX(τ)dBH(τ), as a model of asset prices, which captures the subdiffusive characteristic of financial markets. We find the corresponding subdiffusive Black–Scholes equation and the Black–Scholes formula for the fair prices of European option, the turnover and transaction costs of replicating strategies. We also give the total transaction costs.
Keywords: Subdiffusion; Black–Scholes formula; Fractional Black–Scholes equation; Transaction costs (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007242
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:3:p:750-759
DOI: 10.1016/j.physa.2011.09.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().