Model architecture for associative memory in a neural network of spiking neurons
Everton J. Agnes,
Rubem Erichsen and
Leonardo G. Brunnet
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 3, 843-848
Abstract:
A synaptic connectivity model is assembled on a spiking neuron network aiming to build up a dynamic pattern recognition system. The connection architecture includes gap junctions and both inhibitory and excitatory chemical synapses based on Hebb’s hypothesis. The network evolution resulting from external stimulus is sampled in a properly defined frequency space. Neurons’ responses to different current injections are mapped onto a subspace using Principal Component Analysis. Departing from the base attractor, related to a quiescent state, different external stimuli drive the network to different fixed points through specific trajectories in this subspace.
Keywords: Neural networks; Chemical synapses; Gap junctions; Map-based neuron; Neural coding; Principal Component Analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111006649
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:3:p:843-848
DOI: 10.1016/j.physa.2011.08.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().