On Grover’s search algorithm from a quantum information geometry viewpoint
Carlo Cafaro and
Stefano Mancini
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 4, 1610-1625
Abstract:
We present an information geometric characterization of Grover’s quantum search algorithm. First, we quantify the notion of quantum distinguishability between parametric density operators by means of the Wigner–Yanase quantum information metric. We then show that the quantum searching problem can be recast in an information geometric framework where Grover’s dynamics is characterized by a geodesic on the manifold of the parametric density operators of pure quantum states constructed from the continuous approximation of the parametric quantum output state in Grover’s algorithm. We also discuss possible deviations from Grover’s algorithm within this quantum information geometric setting.
Keywords: Probability theory; Quantum algorithms; Riemannian geometry (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007345
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:4:p:1610-1625
DOI: 10.1016/j.physa.2011.09.018
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().